Neuer: “We are privileged, we must accept the cuts”

first_imgThe captain of the German national team and Bayern Munich, Manuel Neuer, stressed that footballers are “privileged” and that this forces them to accept cuts during the coronavirus crisis, after your club has agreed to pay cuts for all its workers. “Footballers are a specially privileged professional group, so it is evident that we must accept a salary cut when necessary“Neuer acknowledged in statements to the German press.“Bayern has around a thousand employees and many more around the club who carry out important tasks. We want to help them as a team with this gesture and offer them security“The goalkeeper added. The players council around Neuer reached an agreement with the president of the board of directors Karl-Heinz Rummenigge, the sporting director Hasan Salihamidzic and the manager Oliver Kahn so that the staff and the leaders were reduced the 20 percent salary This measure would allow Bayern to avoid reducing the hours of other employees and cutting their wages. Neuer and the German national team had already announced a donation of 2.5 million euros for social causes amid the crisis, a decision that, according to him, “was not difficult at all”. The captain of Germany, however, added that “it should not be forgotten” that many prominent athletes help socially even outside times of crisis. He himself has a foundation to support disadvantaged children.last_img read more

What turns bees into killer bees

first_img Email Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Biochemists have tracked down the brain chemicals that make so-called killer bees such ferocious fighters. The compounds, which seem to be present in higher levels in the much-feared Africanized honey bee, can make less aggressive bees turn fierce, according to a new study. The compounds may also play a role in aggression in other animals—indeed, they’ve already been shown to do so in fruit flies and mice.“This is another example of how behavior evolves in different species by using common molecular mechanisms,” says Gene Robinson, an entomologist and director of the University of Illinois’s Carl R. Woese Institute for Genomic Biology in Urbana, who was not involved in the work.Honey bees are incredibly territorial, fighting to the death to defend their hive with painful stings. But killer bees—hybrids of the relatively docile European strain of honey bee and a more aggressive African relative—are particularly fierce. The hybrids emerged after African bees were imported to Brazil in the 1950s. By the 1980s, they had spread north to the United States, outgunning resident honey bees along the way. Their massive attacks have killed more than 1000 people. Solvin Zankl/Minden Pictures What turns bees into killer bees? Click to view the privacy policy. Required fields are indicated by an asterisk (*)center_img By Elizabeth PennisiJun. 15, 2018 , 2:30 PM Sign up for our daily newsletter Get more great content like this delivered right to you! Country Brain protein fragments spur honey bees to be more aggressive. Mario Palma, a biochemist at São Paulo State University in Rio Claro, Brazil, who studies social behavior in bees, wanted to understand the basis of this aggression. So he and his colleagues swung a black leather ball in front of an Africanized bee hive and collected the bees whose stingers got stuck in the ball during the attack. They also collected bees that remained in the hive. They froze both sets, sliced up their brains, and analyzed the slices with a sophisticated technique that identifies proteins and keeps track of where they are in each slice. The analysis revealed that bee brains have two proteins that—in the aggressive bees—quickly broke into pieces to form a so-called “neuropeptide,” they report this week in the Journal of Proteome Research.Palma and his colleagues already knew that bee brains had these two proteins, allatostatin and tachykinin. “The surprise came out when we identified some very simple neuropeptides, which were produced in a few seconds” after his team swung the ball and triggered the attack, Palma says. The bees that remained in the hive did not make these neuropeptides, he reports. And when his team injected these molecules into young, less aggressive bees, they “became aggressive like older individuals.”Researchers have found these molecules in other insects, where they seem to regulate feeding and digestion. But few had associated them with “fight” behavior, says Palma, who adds that they also increase the production of energy and alarm chemicals. They could also stimulate the nerve cells in bees needed to coordinate the stinging attack. “There is a fine biochemical regulation in the honey bee brain,” he says.Palma’s preliminary studies indicate that Africanized honey bees produce more of these neuropeptides than other honey bees do. His team hopes to eventually use these insights to develop a way to protect people from these killer bees, perhaps through a spray or chemical plug that can be applied to a hive.The studies may also further the understanding of how the production of how various neuropeptides regulate behavior not just in insects, but also in people, Palma suggests. “In neuroscience, there is still a big gap between understanding how molecular pathways and neural circuits work together to regulate behavior,” Robinson says. This work presents “a great way to bridge this gap.”last_img read more